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Abstract—Transient forced convection for slug flow inside parallel-plate channels and circular ducts
including conjugation to the walls is solved analytically and exactly for periodic variation of the inlet
temperature. The periodic solution to the problem involved eigenfunctions and eigenvalues of a complex
eigenvalue problem. The complex eigenvalue problem is solved by modifying the recently advanced Count
Method, and benchmark results are presented for the eigenvalues in tabular form. The amplitude and
phase lag of oscillations with respect to the conditions at the inlet are determined for the wall temperature,
fluid bulk temperature and heat flux. The results for the cases of both parallel-plate channels and circular
ducts are presented in the graphical form as a function of the axial position for different values of the
parameters signifying the rate of energy storage in the walls. The effects of walls on damping the amplitude
and altering the phase of temperature and heat flux oscillations along the duct are investigated.

INTRODUCTION

UNSTEADY forced convection in ducts with periodic
variation of the inlet condition is of interest in the
control of heat exchanger equipment. For most engin-
eering applications, the initial transients are neglected
and the periodic, quasi-stationary solution is used to
predict the response of the control device to periodic
disturbances. As demonstrated in the review works,
by Kalinin and Dreitser [1] and Kakag and Yener [2],
the available work in this area is still very limited. The
principal difficulty in the analysis of such problems
has been the solution of the resulting complex eigen-
value problem. It appears that, Sparrow and de Farias
[3] made the first attempt to evaluate the eigenvalues
of the complex transcendental equation associated
with the problem of forced slug flow in a parallel-plate
duct with conjugation to the walls. Their analysis
resulted in the solution of a system of two non-linear
equations for the determination of the eigenvalues. A
non-documented trial and error procedure was
employed for the numerical evaluation of the real and
imaginary parts of the eigenvalues. Since the whole
spectrum of eigenvalues could not be predicted, some
computational difficulties were encountered by fol-
lowing this approach. Kaka¢ and Yener [2,4] con-
sidered a parabolic velocity profile for fiow inside a
parallel-plate channel and provided a formal solution
for the periodic temperature; but, as the resulting
complex eigenvalue problem could not be solved, an
experimental technique was utilized to estimate the
first eigenvalue.

t Permanent address : Applied Mathematics Center, Sofia,
Bulgaria.

In the present work we further advance the analysis
of ref. [3] by considering transient forced convection
in both parallel-plate channels and circular ducts with
conjugation to the walls, and subjected to a periodic
variation of the inlet temperature. We modify the
recently advanced Count Method [5] to adopt for the
solution of the complex transcendental equation and
present benchmark results for the eigenvalues.

PROBLEM FORMULATION

We consider laminar forced convection inside
parallel-plate channels and circular ducts, subjected
to periodic time variation in the inlet temperature. We
account for conjugation to the wall by balancing the
heat transfer rate at the wall surface to the rate of
energy storage in the wall. Physical properties are
constant and viscous dissipation is negligible. Then
the mathematical formulation of the problem is taken
as

6T(r,z,t)+ 6T(r,z,t)_ iﬁ L0T(r,z,1)
a "z Yra\" T )

in 0<r<r,,

b
n= 1,

with the inlet condition given as

z>0, t>0 (la)
where

for parallel-plate duct
forcircular tube

T(r,0,f) = To+ AT, (1b)

and the boundary conditions as
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NOMENCLATURE
Ay(2), An(2), A,(z) amplitudes for bulk u flow velocity
temperature, heat flux, and wall Z dimensionless axial coordinate,
temperature, respectively uzjur?. [
a*, b* defined by equations (2a) and (2b) ;
ag, by defined by equation (10b) Greek symbols
a,b, defined by equation (14a) ® thermal diffusivity of fluid
¢, d defined by equation (10c) 7,0 real and imaginary part of eigenvalue,
Cps Cy, specific heat of fluid and wall, respectively
respectively ’ complex eigenvalue ) i
k thermal conductivity of fluid 25 Pw fluid and wall density, respectively [
L, wall thickness ) frequency of oscillations "
r radial or normal coordinate Q dimensionless frequency of
Fy radius of circular duct or half the oscillations, wr i/«
spacing between parallel plates T dimensionless time, o#/7}
R dimensionless normal coordinate, /r, 0 dimensionless temperature,
T(r,z,t) fluid temperature (T—Ty/AT,
T.(z,t) wall temperature bu(2), Du(2), pu(z) phase lags for bulk ;
T, mean valve of inlet temperature cycle temperature, heat flux and wall *
AT, amplitude of inlet oscillations temperature, respectively.
j
0T (r, z, 1) Equation (le) is introduced into equation (1d), and
T |, =0 (1€)  then problem (1) is expressed in the dimensionless
form by utilizing the above dimensionless quantities.
& QT((;, z, 1) ~ pucul. ?Tt;ig (1d) We obtain
T ! (R, Z,1) 00(RZ,1) | a(nwwzgv
T(ry,z,0) = Tu(z, ). (le) ot 8Z ~ R"4R "R )
Since we are seeking the periodic solution only, there in 0<R<l, Z>0, >0 (3a)
is no need for the initial condition.
We now assume the slug flow model by setting A(R,0,7) = ¥ (3b)
u = constant, and introduce the following dimen-
sionless quantities 60 (R, _Z’_Q -0 ()
IR |r-o
R= r ., dimensionless normal coordinate . '
" a* 049»(_13_’.2’1) ?Q( l "gj T) =0 (3d)
oz 0R Rt 0t
Z =—;, dimensionlessaxial coordinate
ri and the initial condition is not needed for the periodic
T(r,z,t)—T, solution.
O(R,Z,7) = AT, ,
dimensionless temperature METHOD OF SOLUTION
= i’ dimensionless time To develop a periodic .solgtion to problem (3), we
ri make the following substitution
wr?  dimensionless frequency of the periodic O(R, Z,7) = O(R, Z) %2 @)

Q= .
o inlet temperature.

In addition we define the following two dimensionless
parameters to characterize the effects of wall capaci-
tance to heat transfer:

s _ PO

= el (2a)
Q wCulw
bh* = av* = _wr_lpk_c_,' (Zb)

which results in the following problem for J(R,Z):

0RZ)_ 10 (Rn@(_&é))
oz R" R orR )
in 0<R<1, Z>0 (5a)
with the inlet and boundary conditions given by
G(R,0)=1 (5b)
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AR2Z|
R e, = 0 (5¢)
a* 00(R, Z) +iQA(1,2) = 0. (5d)
OR g

The formal solution to problem (5) is obtained by
the integral transform technique [6] as

5(R,Z)=2;i exp(—z,?zz I (R)

R
j=1 A 1 gzﬂ 2 2 Jl—m(&ﬂ
VY i T\ ip

(6a)

where
1—n 1/2, forparallel-plate duct
m= 2 0, forcircular tube
and As are the roots of the following complex tran-
scendental equation :
ib*J_ (A=A _(A)=0 (6b)

which is obtained from the related complex eigenvalue
problem. _
Once the solution is available for 6(R, Z), the wall
temperature 6,(Z, 7) is obtained from equation (4)
0u,(Z, 1) = 0(1,Z,7) = 0(1,Z) %2 M

the dimensionless fluid bulk temperature 6,(Z,7) is
determined from its definition as

1
0,(Z,7) = (n+1) f R'O(R, Z,7)dR
0
i exp(—47Z)

=4(1—m) j:zliz[l 2m (iﬂ =2 (8)

t i tipr

and the dimensionless wall heat flux Q.(Z,7) is
obtained as

00(R,Z,71)
0u(Z,1)= — TR e,
2 exp(—4*Z)
R GIVEN O i
ib* ib*

The eigenvalue problem being complex, both the
eigenvalues and eigenfunctions are complex quanti-
ties. Therefore, we separate them into real and imagin-
ary parts as

A = y;+i6; (10a)
J _mlA) = ao(y,8)+iby(y, 0) (10b)
Ji_m(A) = c(y,0)+id(y, d) (10¢)

where i = \/— 1. Then Q,(Z, 1), 6,(Z,7) and 0,(Z, 1)
are written in polar coordinates as

0u(Z,7) = A(Z)exp [iQr+41(2Z))]  (11a)

HMT 30/10-G

0,(Z,7) = 4(Z) exp [i(Qr + $(2))]
0(Z,7) = A(Z)exp [i(Qr+ d.(2))]
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(11b)
(11c)

where the various amplitudes 4,(Z), 4,(Z), A,(Z)
and the phase lags ¢,(Z), ¢,(Z), ¢ (Z) are given by

A(Z) = {[2 i Ce 7% F,(Z)]2

j=

© 2)1/2
+[2 ) cz-e*%ZGAZ)] }
j=1

J

C,e 72 G(Z)
¢n(Z) = tan™!

D418

Ce 72 F(Z)

~
]

44(Z) = {[4(1 —m) i Cre 12 F;'(Z)]2

j=

© 231/2
+ [4(1 —m) Y Cre %z G,-*(Z):I }

=1

Y. e GHZ)
$u(Z) =tan™' <
Y G e EH(Z)

4,(Z) = {[2 i Crec? Fj**(Z)]

J

© 23172
-

j=1

.Zl Cj**e—yj‘z Gj**(Z)
¢(Z)=tan ' {5
) Cj**e_yle}**(Z)

J

where

C = b
i (b*2—}/]«2+5j-2)2+4("'lb*+')’j5,-)2

F(Z) = [(6*> =7} +5])cos (5}2)
+2(mb* 47,6, sin (6} Z)] * cos (QZ)
+[2(mb* 4y, cos (6FZ)
—(b**—y}+6})sin (64 2)] *sin (QZ)
G(Z) = [2(mb* +y0,) cos (6} Z)
—(b**—9? +67)sin (6¥Z)] - cos (QZ)
—[(B**—7}+87)cos (6*2)
+2(mb*+7,9))sin (8} Z)] - sin (QZ)

C
(j* = A
L+

FXZ) = y}F(2)+8G(2)
GHZ) = v}G(2)~ 2 F(Z)

(122)

(12b)

(12¢)

(12d)

(12¢)

(12)

(13a)

(13b)

(13¢)
(13d)

(13¢)
(13f)
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Cx* < 3
s (13g)
~,/**(Z) = (a4, +bﬁbi)F/‘(Z)
—(boa, —b1ag)GAZ) (13h)
G*Z) = (boa,—bag)F(Z)

+(aoa+bob)GAZ)  (13i)
=Nl o =29 (133, %)

in addition, a, and b, are the real and imaginary parts
of —AJ,_,(A), that is

— A _m(A) = a,+ib, (14a)
and are determined as
=d8d—7c and b, = —(yd+dc). (l4b,¢)

Therefore, if the real and imaginary parts ; and §,
of the complex eigenvalues are available, numerical
values of the amplitudes and phase lags are readily
determined from the exprcssions given previously

1 llCl ClUl ¢, our ld.bl\ lb now ICUULCU to lﬂC LUmpULdUOU

of y, and §,.

COMPUTATION OF EIGENVALUES

By introducing eguations (10b} and (l4a) into

equation {6b), the complex transcendental equation is
transformed to the following system of two coupled
transcendental equations obtained from the real and
imaginary parts, respectively :

=

—b*by(7,0)+ay(y,0) =0

b*ay(y,0)+b.(y,0) = 0.

(i5a)
(15b)

Following the formalism of the Count Method, these
equations resulting from the real and imaginary parts

of the tranceendental seguation are rn\nriffnn regmec.
O1 inc ranscénalnla: equauon aré rowriiien, respec-

tively, as
fipio) = b~ 10D g (16a)
' by, 0)
fiy;6) = b*+ b:.0) _ 0. (16b)
- ao(% 5)
In this formalism, we imply that, the first argument y

in the functions f(y;d), i=1 or 2, refers to the
unknown variable and the second argument J refers to
the parameter. Furthermore, the roots of d4(y, ) and
ay(y, 8) in equations (16) provide the points of singu-
larity in the behavior of functions fi(y, ) and £y, J),
respectively. For the Count Method to be applicable
for equations (16), the functions f,(y;d) and fx(y;d)
should exhibit a monotonic variation inside each
interval defined by two consecutive singular points.
For the present problem, the functions f(y;9) and
fa(y;6) decrease monotionically with increasing y in
each of such intervals. Then the number of roots of
f1(y;8) or fy(y;8) lying below a certain guess value of
7, for a specified 8, can readily be determined since
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except in the interval in which 7 is chosen. In this last
interval, the sign of the function f,(7, 3) or f4(%,d), for
the chosen value of 7, establishes whether § contains
the root in the last interval or not. By merely exam-
ining the sign of the function £,(7.) or fy(3.4), an
upper and a lower limit is established for the value of
y. Then a bisection procedure can be implemented to
converge, at any desired accuracy, to the proper value
of y corresponding to the order of the eigenvalue
searched.

The same principles apply, if. alternatively, o is
chosen as the unknown variable and 7 the parameter.
For this case the equations associated w1th the imagin-
ary and real parts are written, respectively, as

N [’l(éql’ ) o
J3lo5y) = b% 4+ - o = 1) (Y7a;
o
a:(d.y)
Jaoiy) = —b* o =0 (17b)
where J is the unknown variable and y is the

parameter. In the equation for f4(d;y), the sign is
changed on the right-hand side, for convenience, in
order to maintain monotonically decreasing property
for all of the four equations.

In principle, the computations can be performed
either using the pair of functions ‘f(y; 8) and f3(3;7)
associated with the real and imaginary parts, or the
pair of functions ‘f,(y; 8) and f,(3;v) associated with
the imaginary and real parts. It is posmble that one of
these pairs might not converge for the whole spectrum
of eigenvalues being searched. Then, for such a situ-
ation, switching to the other pair of equations allevi-
ates the convergence difficulty. For the specific prob-
lems of a parallel-plate channel and circular duct
considered here, the functions f5(6;y) and f(6:7), for
a OIVPI‘\ guess value of 7, have nn]\/ one root in the
1nterval 0<dé< . Therefore, one needs to study
only the sign of fi(5;y) or fi(d;7) in order to find
the upper and iower bounds for J, and then use the
bisection procedure to converge to the proper value
of 8.

The computational process for the determination
of y and ¢, in general, is similar to the Count Method

[51, but, in the present problem two non-linear equa-

= Ul I e Present ODICIT anea

tions are to be satisfied. Therefore, the iterations are
continued until covergence is achieved for both y and
6.

In some very special situations, if the convergence
by the bisection process is found to be very slow,
the unconverged results can provide an excellent first
guess for the roots. Once such a good approximation
is available for the roots, a standard efficient sub-
routine package for solving the system of non-linear
equations can be used to converge rapidly to the
exact Vd.lqu Ul u‘u‘: roots.

We summarize below the algorithm we used for
calculating the eigenvalues of the complex eigenvalue

problem encountered in the present problem.
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STEP 1: Make a guess for ¥, inside the interval
defined by the roots of by(y, 0) or ay(y,0), if the equa-
tion for f,(y;d) or f,(y;d) is used, respectively.

STEP 2: Guess §,. Taking zero as a lower bound
study the signs of either f3(5; ) or f4(d;y) until a pair
of upper and lower bounds is established. Apply the
bisection procedure until desired tolerancy is reached
in converging to J;.

STEP 3: Evaluate, by any reliable conventional pro-
cedure, the roots of by(y; J,) or ayy; 9, to redefine
singular points. In general the roots of by(y;0) or
ay(y;0) provide a sufficiently good first guess.

STEP 4: Guess j, inside the desired interval of
updated singular points. Taking the left extreme of
the interval, start the ‘counting’ procedure and study
the signs of either fi(y;d) or f5(y;48) until a pair of
upper and lower bounds is established. Apply the
bisection procedure until desired tolerancy is achieved
in converging to .

STEP 5: Go to Step 2 and repeat procedure until
both y; and §, converge to the desired accuracy. In
general, previous values of y; and §; can now be used
as guesses in Steps 2 and 4 to speed up the procedure,
as well as previous roots of by(y; d) or ay(y;d).

STEP 6: If convergence is not achieved, switch
systems of equations and restart from Step 1. If con-
vergence is particularly slow, refinement can be
obtained by making use of a packed subroutine for
the solution of systems of non-linear equations (e.g.
IMSL subroutines package), using latest results avail-
able as first guesses.

STEP 7: Select next order j and restart procedure
from Step 1 using the last successful system of equa-
tions.

The present scheme proved to be extremely fast and
reliable, since roots cannot be missed and, in general
only a few iterations are required to reach several
digits of accuracy. Quite rarely, in extremely special
situations, one needs to make use of the refinement
mentioned in Step 6, which is now itself fast and
reliable, since excellent first guesses are provided.

For the special case of slug flow inside a parallel-
plate channel and a circular tube, the coefficients a,,
by, ¢ and d are given as follows :

Parallel-plate channel

ae(y, 8) = cosycoshd (18a)

bo(y, ) = —sinysinhd (18b)

¢(y,d) = siny cosh é (18¢)

d(y,6) = cosysinhd. (18d)

Circular duct

ay(y,0) = Re[Jo(A)] (19a)

bo(y,8) = Im [Jo(A)] (19b)

c(y,8) = Re[J,(1)] (19¢)

d(y,0) = Im[J,(2)] (19d)

2077

where the circular duct functions are obtainable from
a standard routine for Bessel functions with com-
plex arguments. For the case of a parallel-plate
channel, some cancellation of terms is possible in the
expressions f, and f5, which results in the exclusion
of the imaginary part ¢ of the eigenvalues in the cal-
culation of the singular points. Therefore, for such a
case, the singularities need to be calculated just once
and Step 3 can be omitted.

RESULTS AND DISCUSSION

In Tables 1 and 2 we present a systematic tabulation
of the first 25 eigenvalues defined by their real and
imaginary parts as given in equation (10a) for parallel-
plates and circular ducts, respectively. Following ref.
[3] we selected the representative values of the par-
ameter b* in excess of one, namely, b* =1, 2, 5, 10,
20 and 100. A large number of eigenvalues were deter-
mined and calculations were performed for various
other values of b*; but space limitations preclude a
more extensive presentation. Table 1, for a parallel-
plate channel, is included, since there is some accuracy
improvement in comparison to the results in ref. [3],
and since the whole spectrum of eigenvalues could not
be obtained from that work.

Quantities of practical interest, such as wall tem-
perature, fluid bulk temperature, and wall heat flux,
were evaluated. However, we have chosen to present
these results in the form of amplitude and time lag of
local oscillations with respect to the inlet conditions
and plotted them as a function of the axial distance
along the duct. Figures 1(a) and (b) show amplitude
A,(Z) and phase lag ¢,(Z) for the wall temperature
for a parallel-plate channel and circular duct, respec-
tively, for the values of b* =2, 5, 10 and 20. The
significance of parameter b* can be interpreted as the
ratio of rate of energy storage at the wall to heat
transfer by conduction across the fluid to or from the
wall. From Figs. 1(a) and (b) we note that, for large
values of b* the thermal wave has little penetration
along the duct, because it decays rapidly with the axial
distance. Therefore, oscillations in fluid temperature
are damped within a short distance from the inlet
because of the large thermal capacity of the walls;
and consequently the wall temperature oscillation is
drastically reduced. For small values of b*, the ther-
mal wave penetrates further down along the duct,
because wall thermal capacity being small it requires
a longer distance for the same amount of heat to be
stored in the wall. These same general trends apply
for both parallel-plate channels and circular ducts;
however, the attenuation of the amplitude seems to
be more pronounced in the circular duct and the time
lag is somewhat larger. In Figs. 2(a) and (b) we present
the amplitude and phase lag of fluid bulk temperature
for a parallel-plate channel and a circular duct, respec-
tively. Again, for large values of b*, the thermal waves
are attenuated within a short distance from the inlet.
Note that the attenuation for the wall temperature is
much stronger than that for the bulk temperature. As
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Table 1. First 25 eigenvalues for a parallel-plate channel

J B d h A B o
A* = 1.0 b* = 2.0 p* =50
1 0.800453  0.570033 1173902 0.580817 1.503032  0.308807
2 3.176552  0.321942 3.310593  0.648553 4209334 0.993579
3 6.287343  0.160303 6.301475  0.327680 6.518534  0.934464
4 9.425990  0.106477 9.429844  0.215240 9.469539  0.583561
5 12.566879  0.079740 12.568455  0.160465 12.582095  0.419923
6 15708223 0.063746 15709018 (.128001 15715379 0.329425
7 18.849706  0.053101 [8.850162  0.106497 18.853665  0.271630
8 21.991243  0.045504 21.991529  0.091194 21.993670  0.231333
9 25.132804  0.039810 25.132995  0.079744 25.134402  0.201605
10 28.274378  0.035382 28.274512  0.070853 28.275487  0.178703
1t 31415959 0.031842 31.416056  0.063748 31416761 0.160511
12 34.557543  0.028945 34.557617  0.057939 34.558142  0.145703
I3 37.699131  0.026532 37.699187  0.053101 37699590  0.133412
14 40.840719  0.024490 40.840763  0.049010 40.841079  0.123042
5 43982309  0.022740 43.982344  0.045504 43.682596  0.114174
i6 47.123899 0.021224 47.123928  0.042467 47124132 0.106503
17 50.265490  0.019897 50.265514  0.039810 50.265682  0.099801
18 53.407082  0.018726 53.407101  0.037466 53.407241  0.093895
19 56.548673  0.017686 56.548690  0.035382 56.548807  0.088650
20 59.690265  0.016755 59.690279  0.033519 59.690379  0.083962
21 62.831857  0.015917 62.831869  0.031842 62831955  0.079746
22 65973449  0.015159 65.973460  0.030325 05973533 0.075933
23 69.115041  0.014470 69.115051  0.028945 69.115115  0.072470
24 72.256634  0.013840 72.256642  0.027686 72256698  0.069308
25 75.398226  0.013264 75.398233  0.026532 75398282  0.066412
b = 10.0 b* = 20.0 h* = 1000

I 1.554739  0.156705 1.566847  0.078502 1.570639  0.015708
2 4.648546  0.501593 4.699719  0.239423 4.711916  0.047154
3 7.632836  0.966257 7.829583  0.413313 7.853190 0.078694
4 10.125043  1.349910 10.951788  0.613882 10.994457  0.110391
S 12.724169  1.027868 14.052036  0.867322 14.135715  0.142310
6 15757852 0.745144 17.064149  1.227805 17.276961  0.174520
7 [8.872500  0.588971 19.705840  1.598343 20.418191  0.207092
8 22.003891  0.489956 22.250740  1.386067 23.559403  0.240103
9 25.140648  0.420831 25221905 1.069232 26.700591  0.273635
10 28.279613  0.369487 28317785 0.877020 29.841752  0.307778
11 31.419642  0.329680 31.441386  0.750583 32982878  0.342631
12 34.560240  0.297831 34.574092  0.659682 36.123965  0.378304
13 37701168 0.271725 37710658  0.590386 39.265003 0.414920
14 40.842298  0.249910 40.849142  0.535397 42405982 0.452619
s 43983558  0.23139%4 43.988686  .490472 45546891 0.491562
16 47.124906  0.215471 47.128863  0.452950 48.687714  0.531935
17 50.266313  0.201626 50.269441  0.421060 51.828431  (.573959
18 53407763 0.189471 53410284  0.393573 54969018  0.6178%4
19 56.549245  0.178714 56551309 0.369602 58.109439  0.664655
20 59.690749  0.169123 59692464  0.348492 61.249650  0.712827
21 62.832270  0.160517 62.833712  0.329744 64,389588  (1.764691
22 65.973805  0.152752 65.975029  0.312971 67.529166  0.820254
23 69.115350  0.145707 69.116399  0.297869 70.668254  0.880307
24 72.256903  0.139288 72257810 0.284194 73.806658  0.94590!
1018476

25 75.398463  0.133414

stated previously, the thermal capacity of the wall in
the parameter b* plays an important role in damping
the amplitude of temperature oscillations. On the
other hand the parameter o* can also be larger due to
the small values of the fluid thermal conductivity ; in
such cases, less heat is transferred across the fluid to
(or from) the wall at each axial location, which in
turn represents smaller variations in the bulk and
consequently wall temperatures. With the smaller

75.399252

0.271748 76.944069

values of b*, the wall and bulk temperatures are closer.
since the information carried by the thermal wave is
sensed almost entirely by the wall at the same location.
Since we are not considering fluids ‘with very high
thermal conductivity such as liquid metals, this
interpretation should be taken as a result of the ratio
of heat storage at the wall and the heat transferred
across the fluid. The geometry has also some effect
on the amplitude and phase lag. The amplitudes are
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Table 2. First 25 eigenvalues for a circular duct

J ¥ d ¥ g ¥ 4
b* =10 b* =20 b* =5.0
1 1111798 0.861266 1.683410  0.976183 2.333615  0.512700
2 3.841619  0.266392 3.887368  0.566309 4775688  1.262684
3 7.017084  0.143485 7.022231  0.292886 7.114421  0.863294
4 10173951  0.098609 10.175495  0.199141 10.191935  0.536559
5 13323905  0.075194 13.324570  0.151241 13.330463  0.394293
6 16470743  0.060788 16.471089  0.122027 16.473910  0.313376
7 19.615925  0.051023 19.616128  0.102312 19.617709  0.260615
8 22760127  0.043965 22760256  0.088100 22761235 0.223311
9 25903701  0.038624 25903788  0.077363 25904438  0.195469
10 29.046849  0.034441 29.046911  0.068963 29.047365  0.173864
11 32189695  0.031076 32.189740  0.062212 32190070  0.156595
12 35332319 0.028310 35332353 0.056666 35332601  0.142468
13 38474775 0.025997 38.474802  0.052029 38.474992  0.130694
14 41617101  0.024033 41.617122  0.048094 41617272 0.120726
15 44759325  0.022345 44.759341  0.044713 44759461 0.112176
16 47.901465  0.020879 47.901479  0.041777 47.901577  0.104762
17 51043539  0.019594 51.043550  0.039202 51043631  0.098271
18 54185557  0.018457 54.185566  0.036927 54.185633  0.092539
19 57.327528  0.017445 57.327536  0.034901 57.327593  0.087440
20 60.469460  0.016539 60.469467  0.033087 60.469515  0.082876
21 63611359 0.015722 63.611364  0.031451 63.611406  0.078765
22 66.753228  0.014982 66.753233  0.029970 66.753269  0.075043
23 69.895073  0.014308 69.895078  0.028622 69.895109  0.071658
24 73.036897  0.013693 73.036900  0.027390 73.036928  0.068566
25 76.178701  0.013128 76.178704  0.026260 76.178728  0.065730
b* = 10.0 b* = 20.0 b* = 100.0
1 2.391580  0.244716 2401747 0.120771 2.404705  0.024052
2 5471201  0.616091 5512216  0.283168 5.519801  0.055256
3 8.404109  1.184718 8.638568  0.462660 8.653290  0.086753
4 10653160  1.443372 11.762399  0.675219 11790931  0.118464
5 13.396963  0.959490 14.865637  0.956632 14.930143  0.150431
6 16493836  0.702539 17.848395  1.395335 18.070109  0.182714
7 19.626631  0.561975 20.283319  1.731004 21210492 0.215382
8 22766101  0.471274 22.899372  1.326965 24351124  0.248512
9 25907420  0.407070 25.949963  1.019918 27491914  0.282187
10 29.049339  0.358893 29.069272  0.843682 30.632804  0.316499
11 32191452 0.321254 32202741 0.726580 33773758 0.351549
12 35333609  0.290958 35340752 0.641436 36.914750  0.387449
13 38475752 0.266005 38.480616  0.575958 40.055757  0.424327
14 41.617860  0.245073 41.621348  0.523649 43.196763  0.462329
15 44759926  0.227247 44762528 0.480690 46.337751  0.501621
16 47.901951  0.211874 47.903951  0.444659 49.478704  0.542397
17 51043936  0.198475 51.045512  0.413931 52.619602  0.584888
18 54185887  0.186689 54.187153  0.387369 55760423  0.629368
19 57.327805  0.176238 57328840  0.364149 58.901140  0.676168
20 60.469695  0.166905 60.470553  0.343658 62.041714  0.725698
21 63.611559  0.158519 63.612279  0.325425 65.182096  0.778468
22 66753401  0.150941 66.754012  0.309088 68.322214  0.835132
23 69.895223  0.144060 69.895746  0.294357 71461962  0.896544
24 73.037028  0.137782 73.037479  0.281002 74.601178  0.963851
25 76178816  0.132032 76.179209  0.268833 77739600  1.038647

somewhat smaller for a circular tube than for a parallel-
plate channel, and phase lags larger.

Figures 3(a) and (b) show the amplitude and phase
lag for the wall heat flux, for a parallel-plate channel
and a circular tube, respectively. For very small axial
distances from the inlet, the amplitude of the wall
heat flux is larger with larger values of b*, since the
temperature gradients are steeper due to the pro-
nounced attenuation in the wall temperature. At large

distances from the inlet, the amplitude of the heat
flux decreases with increasing b*. The amplitudes are
somewhat smaller for a circular tube than for a
parallel-plate channel.

Figure 4 shows the effects of the parameter a*,
characterizing the ratio of heat capacities of fluid to
wall, on the amplitude and phase lag of bulk tem-
perature for flow inside a circular tube. As pointed
out in ref. [3], for the flow of a gas inside a duct with
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F1G. 1(a). Amplitude and phase lag for wall temperature as
a function of the axial distance in a parallel-plate channel
for various values of b*.
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FiG. I(b). Amplitude of phase lag for wall temperature as a
function of the axial distance in a circular tube for various
values of p*.

a metallic wall, the representative values of a* are
much smaller than unity. Therefore, we have chosen
the values of a* varying from 0.01 to 0.0005, for

* — 20. We do not present results for small values of
b*, since the variation in a* has little effect on both
amplitude and phase lag. Note that, in Fig. 4, to
the scale of the plot, the amplitudes are practically
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FI1G. 2(a). Amplitude and phase lag for bulk temperature as
a function of the axial distance in a parallel-plate channel
for various values of h*.
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FI1G. 2(b). Amplitude and phase lag for bulk temperature as
a function of the axial distance in a circular tube for various
values of b*.

unchanged ; the phase lags, however, seem to increase
with increasing axial distance and the heat capacity
ratio a*. It seems that, the relatively large storage in
the fluid itself ‘delays’ the information sensed by both
wall and fluid. For small values of »*, the storage in
the wall being small, the system is rather insensitive
to variations in the fluid storage.
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FiG. 3(a). Amplitude and phase lag for wall heat flux as a
function of the axial distance in a parallel-plate channel for
various values of b*.
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FiG. 3(b). Amplitude and phase lag for wall heat flux as a

function of the axial distance in a circular tube for various
values of b*.
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F1G. 4. Effects of the parameter a* on amplitude and phase
lag of the bulk temperature for flow inside a circular tube.
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CONVECTION VARIABLE, COUPLEE, FORCEE DANS DES CANAUX
AVEC UNE TEMPERATURE VARIANT PERIODIQUEMENT A L’ENTREE
DANS DES CANAUX

Résumé—La convection forcée variable pour un écoulement a deux plans paralléles ou circulaire, incluant
couplage avec parois, est résolue analytiquement et exactement pour une variation périodique de la
température d’entrée. La solution périodique du probléme utilise des fonctions propres et des valeurs
propres d’un probléme complexe. Celui-ci est résolu en modifiant la récente méthode perfectionnée Count
et les résultats sont présentés sous forme tabulaire des valeurs propres. L’amplitude et le retard de phase
des oscillations, par rapport aux conditions 4 entrée sont déterminés pour la température pariétale, la
température du fluide et le flux de chaleur. Les résultats pour les deux types de canaux sont présentés
graphiquement en fonction de Ia position axiale pour différentes valeurs des paramétres signifiant le taux
de stockage d’énergie dans les parois. On étudie les effets des parois sur 'amortissement de I'amplitude et
I"altération de la phase des oscillations de température et de flux le long du canal.

INSTATIONARE GEKOPPELTE ERZWUNGENE KONVEKTION IN KANALEN MIT
PERIODISCHER VARIATION DER FINTRITTSTEMPERATUR

Zusammenfassung—Die instationire erzwungene Konvektion in Rechteckkanilen und kreisférmigen
Rohren wird einschlieBlich der Anbindung an die Wand analytisch und exakt fiir eine periodische Variation
der Fintrittstemperatur berechnet. Die periodische Losung des Problems erfordert Eigenfunktionen und
Figenwerte cines komplexen Eigenwertproblems. Das komplexe Eigenwertproblem wird durch Modi-
fikation der kiirzlich verbesserten *“Count-Methode™ geldst, und ausgewihlte Ergebnisse fiir die Eigenwerte
werden in Tabellenform dargelegt. Die Amplitude und dic Phasenverschicbung von Schwingungen
gegeniiber dem Finrittszustand werden fiir die Wandtemperatur, die Fluidtemperatur und die Wirme-
stromdichte bestimmt. Die Ergebnisse fiir Rechteckkanile und kreisformige Rohre werden in graphischer
Form als Funktion der axialen Lage fiir verschiedene Werte derjenigen Parameter, welche die Energie-
speicherung in den Winden darstellen, prisentiert. Der EinfluB der Wand auf die Démpfung der Ampli-
tude und die Phasenverschiebung der Temperatur- und Wirmestromschwingungen entlang des Kanals
wird untersucht.

HECTALIMOHAPHAS BBIHYXXIAEHHAA KOHBEKLIMA B TPYBAX ITPH
NEPMOAUYECKH M3MEHSIOIENCA TEMITEPATYPE HA BXOJE

Annoramms— Hallaero TouHOE aHAMTHYECKOE PellieH e, BKJIOYAN CONPAKEHHYRO OCTAHOBKY 328314 O
HECTALMOHAPHON BbIHYKZEHHON KOHBEKUHH [UIS CTEPKHEBOTO TEYCHHN B IUIOCKONAPA/IIC/IbHBIX KaHALaX
H Kpyrmix Tpy6ax. Tlepuoamdeckoe pelieHHe 3afau COXCPXHT cobeTsennbie QyHximu u coberpenHbie
JHAYEHHS KOMIUIEKCHOM 3214l Ha coGCTBEHHbIE 3HAYeH)A. PeleHue Mo/yMeH0 ¢ MOMOLbIO MOoAU(HKa-
MM HEDABHO NPENIOKEHHOro MetoXa cdeTa. ITonyueHHble Pe3yNbTaThi MUIA COGCTBEHHBIX 3HAYEHHH
npusesiessl B Tabauuax. OnpeneneHs! aMIIATYAa KojeGanuii B UX 3a/epXKa N0 $ase Mo CPaBHEHHIO C
YCTTOBHSMM Ha BXOJE Ui TEMOEPATYPbI CTEHKH, CPEHCOGBEMHOM TEMIEPATYPhl XHAKOCTH ¥ LIS Ten-
TIOBOTC MOTOKA. PesynbTaThi, mosydeHNbIE A TIOCKONAPAICABHEIX KAHATIOB H KPYIJIHX TPy, npuse-
IeHbi B rpaduueckoM BuIe Kak GYHKIFIHM 32BUCHMOCTH OT NIOJIOKEHHS HA OCH /IS PA3AMYHLIX 3HAYCHNH
[apAMETPOB, ONPEIENSIONINX CKOPOCTH HAKOILICHNS YHEPruH B CTeHKax. M3yuactcd BAMSHNE CTEHOK Ha
3aTyXaHue aMILTATY/bL, & TaKKe H3MeHeHne da3bl xonebanuil TeMIEpaTypsl # TEMIOBOTO NOTOKA BROL
Tpybonposona.



