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Abstract-Transient forced convection for slug flow inside parallel-plate channels and circular ducts 
including conjugation to the walls is solved analytically and exactly for periodic variation of the inlet 
temperature. The periodic solution to the problem involved eigenfunctions and eigenvalues of a complex 
eigenvalue problem. The complex eigenvalue problem is solved by modifying the recently advanced Count 
Method, and benchmark results are presented for the eigenvalues in tabular form. The amplitude and 
phase lag of oscillations with respect to the conditions at the inlet are determined for the wall temperature, 
fluid bulk temperature and heat flux. The results for the cases of both parallel-plate channels and circular 
ducts are presented in the graphical form as a function of the axial position for different values of the 
parameters signifying the rate of energy storage in the walls. The effects of walls on damping the amplitude 

and altering the phase of temperature and heat flux oscillations along the duct are investigated. 

INTRODUCTION 

UNSTEADY forced convection in ducts with periodic 
variation of the inlet condition is of interest in the 
control of heat exchanger equipment. For most engin- 
eering applications, the initial transients are neglected 
and the periodic, quasi-stationary solution is used to 
predict the response of the control device to periodic 
disturbances. As demonstrated in the review works, 
by Kalinin and Dreitser [l] and Kakac and Yener [2], 
the available work in this area is still very limited. The 
principal difficulty in the analysis of such problems 
has been the solution of the resulting complex eigen- 
value problem. It appears that, Sparrow and de Farias 
[3] made the first attempt to evaluate the eigenvalues 
of the complex transcendental equation associated 
with the problem of forced slug flow in a parallel-plate 
duct with conjugation to the walls. Their analysis 
resulted in the solution of a system of two non-linear 
equations for the determination of the eigenvalues. A 
non-documented trial and error procedure was 
employed for the numerical evaluation of the real and 
imaginary parts of the eigenvalues. Since the whole 
spectrum of eigenvalues could not be predicted, some 
computational difficulties were encountered by fol- 
lowing this approach. Kakac and Yener [2,4] con- 
sidered a parabolic velocity profile for flow inside a 
parallel-plate channel and provided a formal solution 
for the periodic temperature ; but, as the resulting 
complex eigenvalue problem could not be solved, an 
experimental technique was utilized to estimate the 
first eigenvalue. 

t Permanent address : Applied Mathematics Center, Sofia, 
Bulgaria. 

In the present work we further advance the analysis 
of ref. [3] by considering transient forced convection 
in both parallel-plate channels and circular ducts with 
conjugation to the walls, and subjected to a periodic 
variation of the inlet temperature. We modify the 
recently advanced Count Method [S] to adopt for the 
solution of the complex transcendental equation and 
present benchmark results for the eigenvalues. 

PROBLEM FORMULATION 

We consider laminar forced convection inside 
parallel-plate channels and circular ducts, subjected 
to periodic time variation in the inlet temperature. We 
account for conjugation to the wall by balancing the 
heat transfer rate at the wall surface to the rate of 
energy storage in the wall. Physical properties are 
constant and viscous dissipation is negligible. Then 
the mathematical formulation of the problem is taken 
as 

dT(r, z, r) 
at 

+ u dT(r, z, r) ~ = ,~#2$), 
az 

in 0 < r < r,, z>O, t>O (la) 

where 

n= 
1 

0, for parallel-plate duct 

1, for circular tube 

with the inlet condition given as 

T(r, 0, t) = T,, + A r, eio’ 

and the boundary conditions as 

(lb) 
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NOMENCLATURE 

&(z), A,,(Z), A,(z) amplitudes for bulk 21 flow velocity 

a*, b* 

a,, bo 
a,>b, 
c,d 
cp> cw 

k 

1, 
r 

rI 

R 
T(r, z, t) 
Twk t) 
To 

ATo 

temperature, heat flux, and wall 
temperature, respectively 

defined by equations (2a) and (2b) 
defined by equation (lob) 
defined by equation (14a) 
defined by equation (10~) 

specific heat of fluid and wall. 
respectively 
thermal conductivity of fluid 
wall thickness 
radial or normal coordinate 
radius of circular duct or half the 

spacing between parallel plates 
dimensionless normal coordinate, r/r, 

fluid temperature 
wall temperature 

mean valve of inlet temperature cycle 
amplitude of inlet oscillations 

z dimensionless axial coordinate. 
rzjur :. 

Greek symbols 
?I thermal diffusivity of fluid 

Y,6 real and imaginary part of eigenvalue, 

respectively 
i complex eigenvalue 

P> Pw fluid and wall density, respectively 

: 
frequency of oscillations 
dimensionless frequency of 
oscillations, wr T/r 

r dimensionless time, at/r z 

B dimensionless temperature, 

(‘Jr--- TO)IATO 
A,(Z), Mz), A&) phase lags for bulk 

temperature, heat flux and wall 
temperature, respectively. 

Wr, z, 0 ___ =O 
Equation (le) is introduced into equation (Id), and 

ar (lc) 
“=” 

then problem (1) is expressed in the dimensionless 
form by utilizing the above dimensionless quantities. 

_k$r(r,z,r) aT,(z, r) We obtain 

ar I=l, 
= p&J, mat-- (ld) 

T(r,, z, t) = T,(z, 0. 

ae(R, Z, r) + a0(R, 2, r) 

(le) a7 az 
_L;i(Rnd!E$!) 

Since we are seeking the periodic solution only, there 
is no need for the initial condition. 

in 0 < R < 1, Z > 0, T > 0 (3a) 

We now assume the slug flow model by setting B(R, 0, Z) = e’“” (3b) 

u = constant, and introduce the following dimen- 

sionless quantities : aeR,Z,z) 

aR 
-0 (3c) 

Rm (1 

R = i;, dimensionless normal coordinate 
a* aU% Z r) f%(l,Z,r) 

CYR 
+---~ .~~. =o 

Z = frfF, 
(72 

(3d) 
Rm- I 

dimensionless axial coordinate 
I and the initial condition is not needed for the periodic 

solution. 

dimensionless temperature METHOD OF SOLUTION 

xt 
Z=“. dimensionless time To develop a periodic solution to problem (3), we 

rl make the following substitution 

n = CL& 

u ’ 
dimensionless frequency of the periodic B(R, Z, z) = g(R, Z) e”‘(’ -” (4) 
mlet temperature. 

In addition we define the following two dimensionless 
which results in the following problem for 6(R, Z) : 

parameters to characterize the effects of wall capaci- a&R Z) 
tance to heat transfer : 

_,,-~~~(&!%&~~, 

a* _ PVl _ I_.~ CW in O<R<l. ZrO (5a) 
O.“C.“L 

with the inlet and boundary conditions given by 

(2b) fj(R,O) = 1 (Sb) 
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WR,Z) 0 
aR R=O 

(54 
&(z, 7) = &(Z)CwW7+ 4~d-W 

&(z, 7) = A.&WxpW7+ M-9)1 

(1 lb) 

(llc) 

A(z) a* am -3 where the various amplitudes A,,(Z), A,,(Z), 

aR 
+ifie”(l,Z) = 0. (5d) R=, and the phase lags 4,,(Z), &(Z), &,(Z) are given by 

The formal solution to problem (5) is obtained by Ah(Z) = 1 
2 

the integral transform technique [6] as 
2 f C,eeYTz E;(Z) 
j=l 

where 

l-n 
m=-= 

{ 

l/2, for parallel-plate duct 

2 0, for circular tube 

and 1,s are the roots of the following complex tran- 
scendental equation : 

ib*J_,(A) - W, _&I) = 0 (6b) 

which is obtained from the related complex eigenvalue 
problem. 

Once the solution is available for &(R, Z), the wall 
temperature &(Z, z) is obtained from equation (4) 

&(Z,t) = e(l,Z,7) = e”(l,Z)e’*,‘-a (7) 

the dimensionless jhid bulk temperature &,(Z, 7) is 
determined from its definition as 

f$,(Z, 7) = (n + 1) R”B(R, Z, 7) dR 

and the dimensionless wall heat flux QW(Z,z) is 
obtained as 

Q,Jz, 7) = - ““(R’$ ‘) 
R=, 

The eigenvalue problem being complex, both the 
eigenvalues and eigenfunctions are complex quanti- 
ties. Therefore, we separate them into real and imagin- 
ary parts as 

A, = yj+iSj 

J-m(lj) = ao(y,@+ibOb,@ 

(lOa) 

(lob) 

+ 2 f CjeO’;“Gj(Z) (12a) 
,= I 

f&(Z) = tan-’ (12b) 

A,,(Z) = f C,*e-YfZq*(z) 
2 

I= I 1 
2 Cj* e-?TZ G,*(Z) 

2 ,,* 
11 WC) 

j= 1 

f#+,(Z) = tan-’ 

A,(Z) = 2 f Cj** e-VZ Fj**(z) 
2 

j= I 1 

(124 

WW 

(W 

where 

b** 

’ = (b*2-y;+c3~)2+4(mb*+yj~j)2 (13a) 

F,(Z) = [(b** - y; + 6;) cos (6:Z) 

+ 2(mb* + yis,> sin (S,*Z)] * cos (QZ) 

+ [2(mb* + y,Jj) cos (6;~) 

-(b*‘-y,?+8$sin(6~Z)].sin(RZ) (13b) 

G,(z) = [2(mb* + y,aj) COS (S,?Z) 

-(b**-y~+8,?)sin(6,*Z)J*cos(RZ) 

- [(b* * - y,’ + 6,‘) cos (8;~) 

+ 2(mb* +y,aj) sin (S,?Z)] * sin (QZ) (13c) 

J,-,(~J = C(Y, @+id(y, 4 (lh) 

where i = ,/ - 1. Then QJZ, 7), 0,(Z, 7) and &,,(Z, 7) 
are written in polar coordinates as 

QdZ 7) = Adz) exp W7 +A(~))1 (114 
HMT 30/10-6 

cj* = c, 
m 

E;*(Z) = y,+E;(Z) + S,+Gj(Z) 

Gjc(Z) = y,*Gj(Z) - 6:4(Z) 

(134 

(13e) 

(13f) 
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c 
c** zz A-.. 

I U:+h: (13d 

F;c*w = (%U, +Jh,b,)qz) 

-@oQ, -b,4Gi(Z) UW 

G,**(Z) = (boa, -bdF,(Z) 

+(aoa~+bobi)Gj(Z) (13i) 

7: = y,? -s: ; 6: = 2@, (131, k) 

in addition, a, and b, are the real and imaginary parts 
of -I.l, _,(A), that is 

-AJ,__,,(;1) = a,+ib, (14a) 

and are determined as 

a, = S$-y,c and b, = -(y,d+6,c). (14b,c) 

Therefore, if the real and imaginary parts yj and Sj 
of the complex eigenvalues are available, numerical 

values of the amplitudes and phase lags are readily 
determined from the expressions given previously. 
Therefore, our task is now reduced to the computation 
of y, and 6,. 

COMPUTATION OF EIGENVALUES 

By introducing equations (lob) and (14a) into 
equation (6b), the complex transcendental equation is 
transformed to the following system of two coupled 

transcendental equations obtained from the real and 
imaginary parts, respectively : 

-b*b&,6)+a,(y,@ = 0 (W 

h*u,(l;, 6) f b ,(r, 6) = 0. (1Sb) 

Following the formalism of the Count Method, these 
equations resulting from the real and imaginary parts 
of the transcendental equation are rewritten, respec- 
tively, as 

In this formalism, we imply that, the first argument y 
in the functions J{y; 6) i = 1 or 2, refers to the 
unknown variable and the second argument 6 refers to 
the parameter. Furthermore, the roots of b&l, 6) and 
a&, 6) in equations (16) provide the points of singu- 

larity in the behavior of functionsf,(y, 6) andf,(y, a), 
respectively. For the Count Method to be applicable 
for equations (16) the functions .f,(y; S) and j”*(y; 6) 
should exhibit a monotonic variation inside each 
interval defined by two consecutive singular points. 
For the present problem, the functions f,(y;6) and 
,f,(y;6) decrease monotonically with increasing y in 
each of such intervals. Then the number of roots of 
f,(y ; 6) or f2(y; S) lying below a certain guess value of 
jj, for a specified S, can readily be determined since 

there should be one root in each of such intervals, 
except in the interval in which 7 is chosen. In this last 
interval, the sign of the function .f;(y, 6) or f;(l;, 6) for 
the chosen value of 7, establishes whether 7 contains 
the root in the last interval or not. By merely exam- 
ining the sign of the function .f’,(y. ti) or f;(i, 6) an 
upper and a lower limit is established for the value of 
y. Then a bisection procedure can be implemented to 
converge, at any desired accuracy, to the proper value 
of y corresponding to the order of the eigenvalue 

searched. 
The same principles apply, if. alternatively, ci IS 

chosen as the unknown variuble and y the parameter. 
For this case the equations associated with the imagin- 
ary and real parts are written, respectively. as 

(17b) 

where 6 is the unknown variable and y is the 
parameter. In the equation for &(J;;J), the sign is 
changed on the right-hand side, for convenience, in 
order to maintain monotonically decreasing property 
for all of the four equations. 

In principle, the computations can be performed 
either using the pair of functions Ij’,(y; 6) and ,f3(8; u)’ 
associated with the real and imaginary parts, or the 
pair of functions tfZ(y; 6) and f4(d; 7)’ associated with 
the imaginary and real parts. It is possible that one of 
these pairs might not converge for the whole spectrum 
of eigenvalues being searched. Then. for such a situ- 
ation, switching to the other pair of equations allevi- 
ates the convergence difficulty. For the specific prob- 
lems of a parallel-plate channel and circular duct 
considered here, the functions fi(6: y) and f4(6: y), for 
a given guess value of y, have only one root in the 
interval 0 < 6 < cu. Therefore, one needs to study 
only the sign of .f,(S; y) or ,fk(s; ;I) in order to find 
the upper and lower bounds for ii, and then use the 
bisection procedure to converge to the proper value 
of 6. 

The computational process for the determination 
of y and 6, in general, is similar to the Count Method 
[S], but, in the present problem two non-linear equa- 
tions are to be satisfied. Therefore, the iterations are 
continued until covergence is achieved for both 7 and 
s. 

In some very special situations, if the convergence 
by the bisection process is found to be very slow, 
the unconverged results can provide an excellent first 
guess for the roots. Once such a good approximation 
is available for the roots, a standard efficient sub- 
routine package for solving the system of non-linear 
equations can be used to converge rapidly to the 
exact values of the roots. 

We summarize below the algorithm we used for 
calculating the eigenvalues of the complex eigenvalue 
problem encountered in the present problem. 
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STEP 1 : Make a guess for yj inside the interval 
defined by the roots of b,(y, 0) or a&, O), if the equa- 
tion for f,(y; S) or f2(y; 6) is used, respectively. 

STEP 2: Guess 8? Taking zero as a lower bound 
study the signs of eitherf,(d; y) orf4(8; y) until a pair 
of upper and lower bounds is established. Apply the 
bisection procedure until desired tolerancy is reached 
in converging to S, 

STEP 3 : Evaluate, by any reliable conventional pro- 
cedure, the roots of b,,(y; Sj) or a&; Sj) to redefine 
singular points. In general the roots of b,,(y;O) or 
ao(y ; 0) provide a sufficiently good first guess. 

STEP 4: Guess Fj inside the desired interval of 
updated singular points. Taking the left extreme of 
the interval, start the ‘counting’ procedure and study 
the signs of either f,(y; 6) or fi(y; 6) until a pair of 
upper and lower bounds is established. Apply the 
bisection procedure until desired tolerancy is achieved 
in converging to Fj 

STEP 5 : Go to Step 2 and repeat procedure until 
both yj and di converge to the desired accuracy. In 
general, previous values of y, and 8, can now be used 
as guesses in Steps 2 and 4 to speed up the procedure, 
as well as previous roots of bo(y; 6,) or a,(y; 6,). 

STEP 6: If convergence is not achieved, switch 
systems of equations and restart from Step 1. If con- 
vergence is particularly slow, refinement can be 
obtained by making use of a packed subroutine for 
the solution of systems of non-linear equations (e.g. 
IMSL subroutines package), using latest results avail- 
able as first guesses. 

STEP 7 : Select next order j and restart procedure 
from Step 1 using the last successful system of equa- 
tions. 

The present scheme proved to be extremely fast and 
reliable, since roots cannot be missed and, in general 
only a few iterations are required to reach several 
digits of accuracy. Quite rarely, in extremely special 
situations, one needs to make use of the refinement 
mentioned in Step 6, which is now itself fast and 
reliable, since excellent first guesses are provided. 

For the special case of slug flow inside a parallel- 
plate channel and a circular tube, the coefficients a,, 
b,, c and dare given as follows : 

Parallel-plate channel 

a,,(~, 6) = cos y cash 6 

b&, 6) = -sin y sinh S 

c(y, 6) = sin y cash 6 

d(y, 6) = cos y sinh 6. 

Circular duct 

(lga) 

(lgb) 

(18~) 

(lgd) 

a,(~, 6) = Re [J&)1 

hd~, 4 = Im [J&>l 

C(Y, 4 = Re [J,(41 

d(y, 6) = Im [J,(41 

(194 

(19b) 

(19c) 

(194 

where the circular duct functions are obtainable from 
a standard routine for Bessel functions with com- 
plex arguments. For the case of a parallel-plate 
channel, some cancellation of terms is possible in the 
expressions f, and f2, which results in the exclusion 
of the imaginary part 6 of the eigenvalues in the cal- 
culation of the singular points. Therefore, for such a 
case, the singularities need to be calculated just once 
and Step 3 can be omitted. 

RESULTS AND DISCUSSION 

In Tables 1 and 2 we present a systematic tabulation 
of the first 25 eigenvalues defined by their real and 
imaginary parts as given in equation (1 Oa) for parallel- 
plates and circular ducts, respectively. Following ref. 
[3] we selected the representative values of the par- 
ameter b* in excess of one, namely, b* = 1, 2, 5, 10, 
20 and 100. A large number of eigenvalues were deter- 
mined and calculations were performed for various 
other values of b* ; but space limitations preclude a 
more extensive presentation. Table 1, for a parallel- 
plate channel, is included, since there is some accuracy 
improvement in comparison to the results in ref. [3], 
and since the whole spectrum of eigenvalues could not 
be obtained from that work. 

Quantities of practical interest, such as wall tem- 
perature, fluid bulk temperature, and wall heat flux, 
were evaluated. However, we have chosen to present 
these results in the form of amplitude and time lag of 
local oscillations with respect to the inlet conditions 
and plotted them as a function of the axial distance 
along the duct. Figures l(a) and (b) show amplitude 
A,(Z) and phase lag 4,(Z) for the wall temperature 
for a parallel-plate channel and circular duct, respec- 
tively, for the values of b* = 2, 5, 10 and 20. The 
significance of parameter b* can be interpreted as the 
ratio of rate of energy storage at the wall to heat 
transfer by conduction across the fluid to or from the 
wall. From Figs. l(a) and (b) we note that, for large 
values of b* the thermal wave has little penetration 
along the duct, because it decays rapidly with the axial 
distance. Therefore, oscillations in fluid temperature 
are damped within a short distance from the inlet 
because of the large thermal capacity of the walls; 
and consequently the wall temperature oscillation is 
drastically reduced. For small values of b*, the ther- 
mal wave penetrates further down along the duct, 
because wall thermal capacity being small it requires 
a longer distance for the same amount of heat to be 
stored in the wall. These same general trends apply 
for both parallel-plate channels and circular ducts ; 
however, the attenuation of the amplitude seems to 
be more pronounced in the circular duct and the time 
lag is somewhat larger. In Figs. 2(a) and (b) we present 
the amplitude and phase lag of fluid bulk temperature 
for a parallel-plate channel and a circular duct, respec- 
tively. Again, for large values of b*, the thermal waves 
are attenuated within a short distance from the inlet. 
Note that the attenuation for the wall temperature is 
much stronger than that for the bulk temperature. As 
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Table I. First 25 eigenvalues for a parallel-plate channel 

i 
_. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
I6 
17 
18 
19 
20 
21 
22 
23 
24 
2s 

I 
2 
3 
4 
5 
6 
7 
8 
9 

IO 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
2s 

h* = 1.0 

0.800453 0.570033 
3.176552 0.321942 
6.287343 0.160303 
9.425990 0.106477 

12.566879 0.079740 
15.708223 0.063746 
18.849706 0.053101 
21.991243 0.045504 
25.132804 0.039810 
28.274378 0.035382 
31.415959 0.03 1842 
34.557543 0.028945 
37.699131 0.026532 
40.840719 0.024490 
43.982309 0.022740 
47.123899 0.021224 
50.265490 0.019897 
53.407082 0.018726 
56.548673 0.017686 
59.690265 0.016755 
62.831857 0.015917 
65.973449 0.015159 
69.115041 0.014470 
72.256634 0.013840 
75.398226 0.013264 

h” = IO.0 

1.554739 0.156705 
4.648546 0.501593 
7.632836 0.966257 

10.129043 

15.757852 0.745144 

1.349910 

18.872500 0.588971 
22.003891 

12.724169 

0.489956 

1.027868 

25.140648 0.42083 1 
28.279613 0.369487 
31.419642 0.329680 
34.560240 0.29783 I 
37.701168 0.271725 
40.842298 0.249910 
43.983558 0.23 1394 
47.124906 0.215471 
50.2663 13 0.201626 
53.407763 0.189471 
56.549245 0.178714 
59.690749 0.169123 
62.832270 0.160517 
65.973805 0.152752 
69.115350 0.145707 
72.256903 0.139288 
75.398463 0.133414 

1, 8) 

h* = 2.0 

1. i 73902 0.580817 
3.310593 0.648553 
6.301475 0.327680 
9.429844 0.2 I 5240 

12.568455 0.160465 
15.709018 0.128OOl 
IX.MOi62 0.106497 
‘1.991529 0.091194 
25.132995 

10.951788 0.613882 

0.079744 
28.274512 0.070853 
31.416056 

14.052036 0.867323 

0.063748 
34.557617 0.057939 
37.699187 0.053101 
40.840763 0.049010 
43.982344 0.045504 
47.123928 0.042467 
50.2655 14 0.039810 
53.407101 0.037466 
56.548690 0.035382 
59.690279 0.033519 
62.833869 0.03 I842 
65.973460 0.030325 
69.115051 0.028945 
12.256642 0.027686 
75.398233 0.02hS32 

/?* : 70.0 

I .566847 0.078502 
4.699119 0.239423 
7.829583 0.413313 

17.064149 I .227805 
19.7OS840 1.598343 
‘2.250740 I .386067 
25.221905 1.069232 
28.317785 0.877020 
31.441386 0.750583 
34.574092 0.659682 
37.710658 0.590386 
40.849142 0.535397 
43.988686 0.490472 
47.128863 0.452950 
50.269443 0.421060 
53.410284 0.393573 
56.551309 0.369602 
59.692464 0.3484Y2 
62.833712 0.329744 
65.975029 0.312971 
69.1 I6399 0.297869 
72.257810 0.284194 
75.399753 C”_ 0.271741; 

stated previously, the thermal capacity of the wall in values ofh*. the wail and bulk temperatures are closer. 

the parameter b* plays an important role in damping since the information carried by the thermal wave is 

the amplitude of temperature oscillations. On the sensed almost entirely by the wall at the same location. 

other hand the parameter 6* can also be larger due to Since we are not considering Ruids with very high 

the small values of the fluid thermal conductivity ; in thermal conductivity such as liquid metals, this 

such cases, less heat is transferred across the fluid to interpretation should be taken as a result of the ratio 

(or from) the wall at each axial location, which in of heat storage at the wall and the heat transferred 

turn represents smaller variations in the bulk and across the fluid. The geometry has also some effect 

consequently wall temperatures. With the smaller on the amplitude and phase lag. The amplitudes are 

I?* = 5.0 

I .503032 0.308807 
4.209334 0.993579 
6.518534 0.934464 
9.469539 0.583561 

12.582095 0.419913 
15.715379 0.329435 
18.853665 0.771630 
2 I .993670 0.231353 
25. I34402 0.201605 
28.275487 0.178703 
31.416761 O.IhOSII 
34.558142 0.145703 
37.699590 0.133412 
40.841079 0.123042 
43.982596 Cl.114174 
47.124132 O.iO6.503 
50.265682 0.099801 
53.407241 0 093895 
56.548807 0.088650 
59.690379 0.0X3962 
62.8319SS 0.079746 
65.973533 0.075933 
69.115115 0.072470 
72.256698 0.069308 
75.398282 0.066413 

h* -: IOO.0 

I .570639 0.0 IS708 
4.711916 0.047 IS4 
7.853190 0.078694 

10.994457 0.110391 
14.33571 0.142310 
17.276961 (J. I74520 
20.418191 0.707092 
23.559403 #.24010? 
26.700591 O.273635 
29.841752 0.307778 
32.982878 Il.34263 1 
36.123965 0.378304 
39.265003 0.4 14920 
42.405982 0.452619 
45.S46891 0.49 I561 
48.687714 0 S.31935 
5 I .828433 0.573959 
54.9690 I8 0.617894 
5x. 109439 0.664OSS 
61.249650 0.7 lW7 
64.389588 0 7646; I 
67.529166 0.820254 
70.668254 0.880307 
73.80665X O.WS’)O f 
76.944069 1 018476 
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Table 2. First 25 eigenvalues for a circular duct 

j 

1 
‘2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Y 6 Y 6 Y s 

b* = 1.0 

1.111798 0.861266 
3.841619 0.266392 
7.017084 0.143485 

10.173951 0.098609 
13.323905 0.075194 
16.470743 0.060788 
19.615925 0.051023 
22.760127 0.043965 
25.903701 0.038624 
29.046849 0.034441 
32.189695 0.031076 
35.332319 0.028310 
38.414775 0.025997 
41.617101 0.024033 
44.759325 0.022345 
47.901465 0.020879 
51.043539 0.019594 
54.185557 0.018457 
51.327528 0.017445 
60.469460 0.016539 
63.611359 0.015722 
66.753228 0.014982 
69.895073 0.014308 
73.036897 0.013693 
76.178701 0.013128 

b* = 10.0 

2.391580 0.244716 
5.471201 0.616091 
8.404109 1.184718 

10.653160 1.443372 
13.396963 0.959490 
16.493836 0.702539 
19.62663 1 0.561975 
22.766101 0.471274 
25.907420 0.407070 
29.049339 0.358893 
32.191452 0.321254 
35.333609 0.290958 
38.475752 0.266005 
41.617860 0.245073 
44.159926 0.227247 
47.901951 0.211874 
51.043936 0.198475 
54.185887 0.186689 
57.327805 0.176238 
60.469695 0.166905 
63.611559 0.158519 
66.753401 0.150941 
69.895223 0.144060 
73.037028 0.137782 
76.178816 0.132032 

b* = 2.0 

1.683410 0.976183 
3.887368 0.566309 
7.022231 0.292886 

10.175495 0.199141 
13.324570 0.151241 
16.471089 0.122027 
19.616128 0.102312 
22.760256 0.088100 
25.903788 0.077363 
29.0469 11 0.068963 
32.189740 0.062212 
35.332353 0.056666 
38.474802 0.052029 
41.617122 0.048094 
44.759341 0.044713 
47.901479 0.041777 
51.043550 0.039202 
54.185566 0.036927 
57.327536 0.03490 1 
60.469467 0.033087 
63.611364 0.031451 
66.753233 0.029970 
69.895078 0.028622 
73.036900 0.027390 
76.178704 0.026260 

b* = 20.0 

2.401747 0.120771 
5.512216 0.283168 
8.638568 0.462660 

11.762399 0.675219 
14.865637 0.956632 
17.848395 1.395335 
20.2833 19 1.731004 
22.899372 1.326965 
25.949963 

73.037479 0.281002 

1.019918 
29.069212 

76.179209 

0.843682 
32.202741 

0.268833 

0.726580 
35.340752 0.641436 
38.480616 0.575958 
41.621348 0.523649 
44.762528 0.480690 
47.903951 0.444659 
51.045512 0.413931 
54.187153 0.387369 
57.328840 0.364149 
60.470553 0.343658 
63.612279 0.325425 
66.754012 0.309088 
69.895746 0.294357 

b* = 5.0 

2.333615 0.512700 
4.775688 1.262684 
7.114421 0.863294 

10.191935 0.536559 
13.330463 0.394293 
16.473910 0.313376 
19.617709 0.260615 
22.761235 0.223311 
25.904438 0.195469 
29.047365 0.173864 
32.190070 0.156595 
35.332601 0.142468 
38.474992 0.130694 
41.617272 0.120726 
44.759461 0.112176 
47.901577 0.104762 
51.043631 0.098271 
54.185633 0.092539 
51.327593 0.087440 
60.4695 15 0.082876 
63.611406 0.078765 
66.753269 0.075043 
69.895109 0.071658 
73.036928 0.068566 
76.178728 0.065730 

b* = 100.0 

2.404705 0.024052 
5.519801 0.055256 
8.653290 0.086753 

11.790931 0.118464 
14.930143 0.15043 1 
18.070109 0.182714 
21.210492 0.215382 
24.351124 0.248512 
27.491914 0.282187 
30.632804 0.316499 
33.773158 0.351549 
36.914750 0.387449 
40.055757 0.424327 
43.196763 0.462329 
46.337751 0.501621 
49.478704 

74.601178 

0.542397 
52.619602 

0.963851 

0.584888 
55.160423 

77.739600 

0.629368 
58.901140 

1.038647 

0.676168 
62.041714 0.725698 
65.182096 0.778468 
68.322214 0.835132 
71.461962 0.896544 

somewhat smaller for a circular tube than for a parallel- 

plate channel, and phase lags larger. 

Figures 3(a) and (b) show the amplitude and phase 

lag for the wall heat flux, for a parallel-plate channel 

and a circular tube, respectively. For very small axial 

distances from the inlet, the amplitude of the wall 

heat flux is larger with larger values of b*, since the 

temperature gradients are steeper due to the pro- 

nounced attenuation in the wall temperature. At large 

distances from the inlet, the amplitude of the heat 

flux decreases with increasing b*. The amplitudes are 

somewhat smaller for a circular tube than for a 

parallel-plate channel. 

Figure 4 shows the effects of the parameter a*, 

characterizing the ratio of heat capacities of fluid to 

wall, on the amplitude and phase lag of bulk tem- 

perature for flow inside a circular tube. As pointed 

out in ref. [3], for the flow of a gas inside a duct with 
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- Amplitude. A,(z) 

------- Phase lag -@J&)/x 

FIG. 1 (a). Amplitude and phase lag for wall temperature as 
a function of the axial distance in a parallel-plate channel 

for various values of hr. 

II\“\! - Amplitude. A,(Z) 

.._._ . -_ --, _Jo.o 
0.5 1.0 1.5 

FIG. I(b). Amplitude of phase lag for wall temperature as a FIG. 2(b). Amplitude and phase lag for bulk temperature as 

function of the axial distance in a circular tube for various a function of the axial distance in a circular tube for various 

values of h*. values of h*. 

FIG. 2(a). Amplitude and phase lag for bulk temperature as 
a function of the axial distance in a parallel-plate channel 

for various values of h* _ 

a metallic wall, the representative values of u* are 
much smaller than unity. Therefore, we have chosen 
the values of a* varying from 0.01 to 0.0005, for 

b* = 20. We do not present results for small values of 
b*, since the variation in a* has little effect on both 
amplitude and phase lag. Note that, in Fig. 4, to 

unchanged ; the phase lags, however, seem to increase 
with increasing axial distance and the heat capacity 
ratio a*. It seems that, the relatively large storage in 
the fluid itself ‘delays’ the information sensed by both 
wall and fluid. For small values of b*, the storage in 
the wall being small, the system is rather insensitive 
to variations in the fluid storage. the scale of the plot, the amplitudes are practically ~_ 
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FIG. 3(a). Amplitude and phase lag for wall heat flux as a 
function of the axial distance in a parallel-plate channel for 

various values of b*. 
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FIG. 3(b). Amplitude and phase lag for wall heat flux as a 
function of the axial distance in a circular tube for various 

values of b*. 
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FIG. 4. Effects of the parameter a* on amplitude and phase 
lag of the bulk temperature for flow inside a circular tube. 
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CONVECTION VARIABLE, COUPLEE, FORCEE DANS DES CANAUX 
AVEC UNE TEMPERATURE VARIANT PERIODIQUEMENT A L’ENTREE 

DANS DES CANAUX 

R&un&-La convection for&e variable pour un icoulernent a deux plans paralleles ou circulaire, incluant 
couplage avec parois, est resolue analytiquement et exactement pour une variation periodique de la 
temperature d’entree. La solution pbriodique du probleme utilise des fonctions propres et des valeurs 
propres d’un probleme complexe. Celui-ci est rCsolu en modifiant la recente methode perfectionnee Count 
et les resultats sont present&s sous forme tab&ire des valeurs propres. L’amplitude et le retard de phase 
des oscillations, par rapport aux conditions a l’entme sont determines pour la temperature pa&ale, la 
temperature du Auide et Ie flux de chaleur. Les resultats pour les deux types de canaux sent presenms 
graphiquement en fonction de la position axiale pour differentes valeurs des parametres sign&ant le taux 
de stockage d’energie dans les parois. On dtudie les effets des parois sur I’amortissement de l’amplitude et 

l’alteration de la phase des oscillations de temperature et de flux le long du canal. 

~STATION~RE GEKOPPELTE E~WUNGENE KONVEKTION IN KANALEN MIT 
PERIODISCHER VARIATION DER EINTRITTSTEMPERATUR 

Zuaanunenfassung-Die instationare erzwungene Konvektion in Rechteckkanalen und kreisfijrmigen 
Rohren wird einschlieSlich der Anbindung an die Wand analytisch und exakt filr eine periodische Variation 
der Eintrittstemperatur berechnet. Die periodische Liisung des Problems erfordert Eigenfunktioncn und 
Eigenwerte eines komplexen Eigenwer~roblems. Das komplexe Eigenwertproblem wird durch Modi- 
fikation der kiirzlich verbesserten “Couni-Methode” gel&t, und ausgew&lte Ergebnisse fiir die Eigenwerte 
werden in Tabellenform dargefegt. Die Amplitude und die Phasenverschiebung von Schwingungen 
gegeniiber dem Einrittszustand werden fiir die Wandtemperatur, die Fluidtemperatur und die Warme- 
stromdichte bestimmt. Die Ergebnisse fiir Rechteckkaniile und kreisfiirmige Rohre werden in graphischer 
Form als Funktion der axialen Lage ftir verschiedene Werte derjenigen Parameter, welche die Energie- 
speicherung in den Wlnden darstellen, prlsentiert. Der EinfluB der Wand auf die Dampfung der Ampli- 
tude und die Phasenverschiebung der Temperatur- und W~~estromschwin~ngen entlang des Kanals 

wird untersucht. 

HECTAHHOHAPHA5I BbIHYmAEHHAJI KOHBEKHHII B TPYIjAX HPM 
IIEPMOAI+IECKB H3MEHRIOII&I?CII TEMIIEPATYPE HA BXOAE 

~Ta~m-~a~e~o ~owme aH~~~T~q~K~ pe~eHHe,~K~~~a~ conpmewym ~~Ta~oBKy 3aAawi 0 

n~a~oHapH0~ a~H~AeHn0~ KoHBeK~~~ nna crepxoie5oro reyemis B n~~Konap~ne~bH~x xananax 
u Kpyrnbix rpy6ax. ~epwoAri%sCKoe pememie 3aAasa CoAepmiT co6cTsenHbIe ~yitrwia 13 CO6CTSeHHbie 
3Ha~eH~~Ko~n~eKcHoii3aAa~~~ac06CT~e~Hb~e3Ha~e~~fl.PeLueHkfenony~eeocno~omb~ Mo,am@iKa- 

um HeAanfio npeQnomeHHor0 MeToAa csera. Honyrerinbre pe3ynbrarbt nnff c06crnemibtx 3riaqemiB 
npnsenetibt B TaGnasax.OnpeAeneHbI amnuTyAa KoneBaaufi H HX 3aAepnKa no +a3e no cpamemiw c 

yCnOBESKMk4 Ha BXOAe AJUI TeMnepaTypbI CTeHKA,CpelUfeo6$eMtioii TeMnepaTypbI XGiAKOCTH H AJIR Ten- 

no~ofo noroka. Pe3ynbrarbi, nonyrlexwbte ans nnocKo~ap~nenbHb~x KamnoB w Kpyrnbix Tpy6, npme- 

Aenbi B rpatpwwcxohn ~~~K~K~~HK~KH 3aBucnMocT~ 0~ nono~eiius riaocnnns pa3nmfnblx 3na9eHnE 

~apaM~~n,oR~AenK~~~xcKop~Tb HaKonnemIi 3Hepfliu B cTeHKax. M3ysaeTcR mmmiecTe~oK Ha 

saTyxaHueaMnneTyAbl,a TaKW(e n3MeHemie(pa3bI KoneGamk TeMtIepaTypbl li TennoBoro nOTOKa BAOJIb 
Tpy6OIIpOBOJla. 


